Hawaii Hybrid
Loading...
Searching...
No Matches
constants.h
Go to the documentation of this file.
1#ifndef CONSTANTS_H_
2#define CONSTANTS_H_
3
4// SOURCE:
5// CODATA Task Group on Fundamental Constants, 2022 edition (became available on 20 May 2024)
6// https://physics.nist.gov/cuu/Constants/
7
8#define ALU 5.29177210903e-11 // SI: m
9#define Boltzmann 1.380649e-23 // SI: J * K^(-1)
10#define Hartree 4.3597447222071e-18 // SI: J
11#define HTOCM 2.1947463136320e5 // 1 Hartree in cm-1
12#define ATU 2.4188843265857e-17 // SI: s
13#define LightSpeed 2.99792458e8 // SI: m / s
14#define LightSpeed_cm 2.99792458e10 // cm / s
15#define ADIPMOMU 8.4783536255e-30 // SI: C * m
16#define EPSILON0 8.8541878128e-12 // SI: F * m^(-1)
17#define AMU 9.1093837139e-31 // SI: kg
18#define ADIPTODEBYE 2.541580 // atomic units of dipole -> Debye
19
20#define Planck 6.62607015e-34 // SI: J * s^(-1)
21#define HBar 1.054571817e-34 // SI: J * s^(-1)
22#define NL 2.686780111e25 // SI: m^(-3)
23
24#define HkT (Hartree/Boltzmann) // to use as: -V[a.u.]*`HkT`/T
25#define VkT (HkT / HTOCM) // to use as: -V[cm-1]*`VkT`/T
26
27#define BohrToAng 0.529177210903
28
29#define ZeroCoeff (0.00361479637/(4.0*M_PI))
30#define SecondCoeff 13856114.29344114
31
32// This constant is also denoted as A
33// MOMENT_SF_COEFF * \int_{-\infty}^{+\infty} J(\nu) * \nu^n d\nu -> cm^(-n-1) amagat^(-2)
34#define Moment_SF_Coeff ((8.0*M_PI*M_PI*M_PI)*NL*NL/3.0/HBar)
35
36#define RAMTOAMU 1822.888485332
37
38// M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu. The AME2016 atomic mass evaluation. Tables, graphs and references.
39// http://nuclearmasses.org/resources_folder/Wang_2017_Chinese_Phys_C_41_030003.pdf
40#define m_H (1.007825032241 * RAMTOAMU)
41#define m_D (2.014101778114 * RAMTOAMU)
42#define m_C (12.000000000000 * RAMTOAMU)
43#define m_N (14.003074004460 * RAMTOAMU)
44#define m_O (15.994914619598 * RAMTOAMU)
45#define m_Ar (39.9623831237 * RAMTOAMU)
46#define m_He (4.00260325413 * RAMTOAMU)
47
48#define m_H2 (2.0 * m_H)
49#define m_D2 (2.0 * m_D)
50#define m_N2 (2.0 * m_N)
51#define m_CO (m_C + m_O)
52#define m_CO2 (m_C + 2.0 * m_O)
53#define m_CH4 (m_C + 4.0 * m_H)
54
55// A. Rizzo, J. L. Cacheiro, B. F. Rodriguez, B. Jansik, T. B. Pedersen. Theoretical gas and dielectric second virial coefficients of CO-Ar.
56// Molecular Physics, 2008, 106 (07), pp. 881-892. doi: 10.1080/00268970802001363
57// #define l_CO 2.132 // bohr
58#define mu_CO 0.0481131 // e a0
59
60// 19.05.2025. The length of CO is updated according to the rotational constant B = 57635.96828(12) MHz
61// from https://physics.nist.gov/PhysRefData/MolSpec/Diatomic/Html/Tables/CO.html
62// double B_MHz = Planck/(8.0*M_PI*M_PI*II_CO*AMU*ALU*ALU) / 1e6; // MHz
63// double B_cm = Planck/(8.0*M_PI*M_PI*II_CO*AMU*ALU*ALU) / LightSpeed_cm; // cm-1
64// [ B_cm = 1.92253e+00 cm-1 ]
65#define l_CO 2.1370695550
66// The centrifugal distortion constant also taken from
67// https://physics.nist.gov/PhysRefData/MolSpec/Diatomic/Html/Tables/CO.html
68// The raw value is in kHz and converted into cm-1 => 6.121e-06 cm-1
69#define D_CO (183.5058*1e3/LightSpeed_cm) // cm-1
70// NIST also recommends the following value of dipole moment for CO:
71// mu(CO) = 0.10980(3) Debye whereas the Rizzo value in Debye is 0.12228 (>10% difference)
72
73
74// ?
75#define l_CO2 4.398
76
77// zero-point vibrationally averaged value
78// Source: J. Bendten and F. Rasmussen, Journal of Raman Spectroscopy, 2000, 31, 433-438
79// #define L_N2 2.078
80#define L_N2 2.07856749
81
82// Source: K. P. Huber, G. Herzberg. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic molecules, Springer, US, 1979
83// did not found B0 but this value of L_H2 is mentioned in several works, e.g.:
84// O. Denis-Alpizar, Y. Kalugina, T. Stoecklin, M. Hernandez Vera, F. lique, A new ab initio potential energy surface for the collisional excitation of HCN by para- and ortho-H2. J. Chem. Phys., 139, 224301, 2013.
85// W. Rijks, P. E. S. Wormer, Correlated van der Waals coefficients for dimers consisting of He, Ne, H2, and N2. J. Chem. Phys., 88, 5704, 1988.
86// #define l_H2 1.448736
87
88// Source: https://webbook.nist.gov/cgi/cbook.cgi?ID=C1333740&Mask=1000#Diatomic
89// taken rotational constant B = 60.8530119 cm-1 and derived the bond length from it =>
90#define l_H2 1.401130 // bohr
91// The centrifugal distortion constant (De) taken from
92// https://webbook.nist.gov/cgi/cbook.cgi?ID=C1333740&Mask=1000#Diatomic
93#define D_H2 0.0471121 // cm-1
94// The centrifugal distortion constant (De) taken from
95// https://webbook.nist.gov/cgi/cbook.cgi?ID=C7782390&Mask=1000
96#define D_D2 0.0114169 // cm-1
97
98#define II_N2 (m_N / 2.0 * L_N2 * L_N2)
99
100#define II_CO2 (m_O/2.0*l_CO2*l_CO2)
101#define II_H2 (m_H/2.0*l_H2*l_H2)
102#define II_D2 (m_D/2.0*l_H2*l_H2)
103#define II_CO ((m_C * m_O)/(m_C + m_O)*l_CO*l_CO)
104
105// Source: S. Albert, S. Bauerecker, V. Boudon, L. R. Brown, J. P. Champion, M. Loete, A. Nikitin, M. Quack, Chemical Physics, 2009, 356, 131-146.
106// B0 = 5.241040019 cm-1 (page 8; Supplementary material)
107#define l_CH4 2.067354047786849
108// used in our quantum chemistry calculations for CH4-N2 and CH4-CO2
109// there is a small inconsistency with B0 from (Albert, 2009)
110// l_CH4 -> B0calc = 5.240957524426735
111// using this l_CH4 for consistency with PES & IDS
112
113
114// source of formula: http://www.pci.tu-bs.de/aggericke/PC4e/exercises/Sol04.pdf
115#define II_CH4 (8.0/3.0 * m_H*l_CH4*l_CH4)
116// Product of moments of inertia IIA * IIB * IIC = 33.27803 amu^3 A^6 (amu = unified atomic mass unit = RAM)
117// this agrees with the value IIA * IIB * IIC = 33.27341 amu^3 A^6 provided in the
118// Computational Chemistry Comparison and Benchmark DataBase (CCCBDB, Release 21, August 2020) by NIST
119// https://cccbdb.nist.gov/exp2x.asp?casno=74828&charge=0
120
121#endif // CONSTANTS_H_